

# FINAL DESIGN HYDRAULIC STUDY

### ENNIS ROAD BRIDGE AT Sand Creek

Bridge Number 42C0697

Fresno County, CALIFORNIA



Final Design Hydraulic Study ENNIS ROAD BRIDGE OVER SAND CREEK

Fresno County, CALIFORNIA

Bridge #42C0697

S E P T E M B E R 15, 2020

# PREPARED FOR: BKF ENGINEERS AND FRESNO COUNTY DEPARTMENT OF PUBLIC WORKS

Prepared by:

AVILA AND ASSOCIATES CONSULTING ENGINEERS, INC.



Catherine M.C. Avila, P.E

#### TABLE OF CONTENTS

| Table Of Contents                | <i>ii</i>  |
|----------------------------------|------------|
| List of Figures                  | <i>iii</i> |
| List of Tables                   | <i>iii</i> |
| List of Appendices               | <i>iii</i> |
| Executive Summary                |            |
| General                          |            |
| Bridge History                   |            |
| Basin and discharge              |            |
| HEC-RAS Analysis                 |            |
| Existing Conditions              | 11         |
| Starting Water Surface Elevation |            |
| Proposed Bridge Model            |            |
| Hydraulic Criteria               |            |
| Drift                            |            |
| Scour                            |            |
| Bank Protection                  |            |
| Summary Tables                   |            |
| References                       |            |
| Appendices                       |            |

#### LIST OF FIGURES

| Figure 1. Bridge location map                                                                              | 6     |
|------------------------------------------------------------------------------------------------------------|-------|
| Figure 2. Proposed bridge profile view                                                                     | 7     |
| Figure 3. Basin contributing to the bridge (USGS streamstats)                                              | 8     |
| Figure 4. Plan view of HEC-RAS cross section                                                               | 10    |
| Figure 5. Looking upstream at the channel. The creek bottom is heavily vegetated and the bank and overbank | areas |
| are vegetated with higher manning "n" values                                                               | 11    |
| Figure 6. HEC-RAS cross section for the upstream existing conditions for the 50-100-year Q's               | 12    |
| Figure 7. Starting Water Surface Elevation convergence for the 100-year discharge                          | 12    |
| Figure 8. Existing and proposed bridge shown in plan view                                                  | 13    |
| Figure 9. 50year and 100-yr water surface elevation comparison existing vs. Proposed bridge                | 14    |
| Figure 10. Close up of Figure 9                                                                            | 14    |
| Figure 11. Channel cross-sections over time at the existing bridge                                         | 16    |
| Figure 12: Articulated Concrete block (from http://www.conteches.com/products/erosion-control/hard-        |       |
| armor/armorflex)                                                                                           | 17    |

#### LIST OF TABLES

| Table 1. Estimated discharges and water surface elevations for the proposed bridge |    |
|------------------------------------------------------------------------------------|----|
| Table 2. Bridge details and summary of maintenance records                         | 7  |
| Table 3. Regression and HEC-HMS analyses results                                   | 9  |
| Table 4. Discharges used for design                                                | 9  |
| Table 5. Rock Slope Protection based upon HEC-23                                   | 16 |

#### LIST OF APPENDICES

Appendix A – General Plan

Appendix B – Regression and hec-hms Discharges

Appendix D = Regression and nec-nms DischargesAppendix C = HEC-RAS OutputAppendix D = Flood of RecordAppendix E = Bank Protection Appendix F = Articulated Concrete Block Technical Memorandum

#### EXECUTIVE SUMMARY

The Ennis Road Bridge (Bridge) at Sand Creek in Fresno County, California is proposed for replacement by Fresno County in 2019/2020. The proposed bridge is a 101-foot long single span cast-in-place precast box girder bridge supported by reinforced concrete abutments on spread footings. The bridge is 26 feet-10 inches wide and will accommodate two travel lanes and shoulders as shown in the attached General Plans (see Appendix A).

Sand Creek flows southwesterly through the central part of Fresno County (County) draining an approximate 18.2-square-mile basin at the bridge site. The discharges used for the bridge hydraulic analysis are shown in Table 1.

|                                                                       | Design | Base  | Flood of Record |
|-----------------------------------------------------------------------|--------|-------|-----------------|
| Frequency (years)                                                     | 50     | 100   | < 50            |
| Discharge (cubic feet per second)                                     | 2,770  | 3,345 | 2,200           |
| Water Surface (elevation in feet at upstream face of Bridge)          | 950.2  | 951.2 | 949.2           |
| Available Freeboard (in feet at upstream face of Bridge) <sup>1</sup> | 5.4    | 4.4   | 6.4             |

Table 1. Estimated discharges and water surface elevations for the proposed bridge

This study used hydraulic modeling based on a HEC-RAS<sup>2</sup> model to estimate the water surface elevation (WSE) for the existing and proposed bridge. Results indicate that after construction of the new bridge, the water surface elevation will be lower. With a proposed minimum soffit elevation of 955.6, there will be approximately 5.4 feet of freeboard over the 50-yr WSE and approximately 4.4 feet of freeboard over the 100-yr WSE.

This report follows the California Department of Transportation (Caltrans) Final Hydraulic Report Format and has been prepared in accordance with the Caltrans Local Assistance Program Guidelines (Caltrans 2020) and Memos to Designers 16-1<sup>3</sup>.

The proposed bridge will be higher and longer than the existing bridge thus increasing the available flow area and decreases the water surface elevation relative to existing conditions.

<sup>&</sup>lt;sup>3</sup> Caltrans Memo to Designers 16-1 December 2017 (http://www.dot.ca.gov/hq/esc/techpubs/manual/bridgememo-to-designer/page/Section%201/16-1m.pdf).



<sup>&</sup>lt;sup>1</sup> Based on a proposed minimum soffit elevation of 955.6.

<sup>&</sup>lt;sup>2</sup> US Army Corps of Engineers Hydraulic Engineering Center River Analysis System which backwater hydraulic model designed to perform one-dimensional hydraulic calculations for a full network of natural and constructed channels.

#### GENERAL

This design hydraulic study has been prepared for the sole purpose of meeting the requirements of the Caltrans "Local Assistance Program Guidelines." Although potentially useful for other purposes, this analysis has not been prepared for any other purpose. Reuse of information contained in this report for purposes other than for which Avila and Associates Consulting Engineers, Inc. (Avila and Associates) intended and without their written authorization is not endorsed or encouraged and is at the sole risk of the entity reusing the information.

Avila and Associates was retained to complete the bridge hydrology, hydraulics, and scour analysis for the replacement of the existing Ennis Road Bridge over Sand Creek in Fresno County. The location of this project is shown in Figure 1. The following scope of work has been completed to develop this report:

- 1. Obtain backup information and field review
- 2. Estimate hydrology
- 3. Create HEC-RAS model
- 4. Prepare draft report for comment
- 5. Prepare final report
- 6. Complete location hydraulic study
- 7. Coordinate with the Central Valley Flood Protection Board

The existing bridge is located approximately 14 miles northeast of Reedley, as shown in Figure 1. The existing bridge was constructed in 1975. It is a single span bridge with timber stringers on timber sills with a reinforced concrete deck and plywood subfloor supported by reinforced concrete abutments. It has a sufficiency rating, as of 2012, of 58.2 and is functionally obsolete. The Fresno County Public Works Department proposes to replace the existing bridge using Highway Bridge Program (HBP) funds.



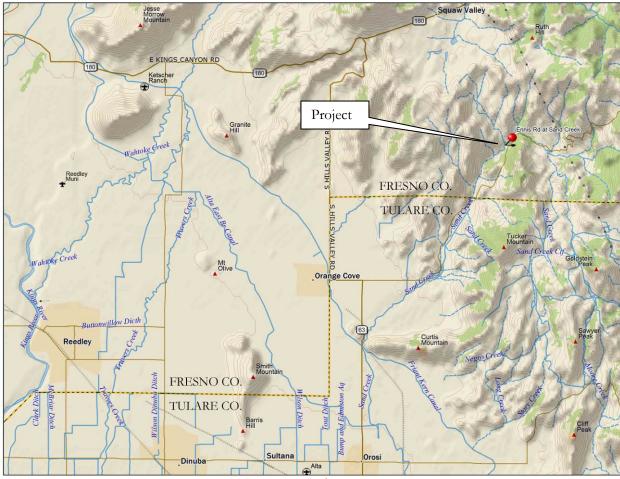



Figure 1. Bridge location map

The datum elevation used for this study is NAVD-88<sup>4</sup>. The proposed bridge will be a 101-foot-long one span cast-in-place pre-stressed box girder bridge supported by reinforced concrete abutments, as shown in Figure 2. The bridge will accommodate two travel lanes and shoulders as shown in the attached General Plan (see Appendix A). As part of this bridge replacement project, the alignment of Ennis Road is proposed to be simplified by removing a tight radius curve that approaches the existing bridge on the east side. The location of the proposed bridge is the same as the existing bridge; however, due to the proposed realignment, the proposed bridge will be significantly skewed with respect to the existing bridge.

<sup>&</sup>lt;sup>4</sup> E-mail from Sheila Amparo, Project Engineer, BKF Engineers to Cathy Avila, Project Manager, Avila and Associates dated September 16, 2015.





Figure 2. Proposed bridge profile view

#### BRIDGE HISTORY

Avila and Associates reviewed the pertinent bridge maintenance records for the existing bridge to review the typical impacts to bridges along this reach. Details of the bridge and a summary of the maintenance records are shown in Table 2.

|                              | Ennis Road                                                                    |
|------------------------------|-------------------------------------------------------------------------------|
| Bridge Number                | 42C0697                                                                       |
| Bridge Length (ft)           | 31                                                                            |
| Span Lengths (ft)            | 1 @ 28.5                                                                      |
| Bridge Type                  | Simply- supported single-span timber stringer (24), with CIP/RC               |
|                              | deck and plywood subfloor, on timber sills on RC abutments                    |
|                              | founded on large boulders and bedrock.                                        |
| Debris Challenges            | None noted                                                                    |
| Cross Sections Available for | 1993, 2006                                                                    |
| NBIS Item 113 (scour) code   | 8                                                                             |
| ELI Flag 361 Condition State | N/A                                                                           |
| Pier Type                    | N/A                                                                           |
| Year Built                   | 1975                                                                          |
| Year Widened                 | N/A                                                                           |
| Scour Challenges             | 1985 <sup>5</sup> , 1987 <sup>6</sup> , 1989 <sup>7</sup> , 1993 <sup>8</sup> |

Table 2. Bridge details and summary of maintenance records



<sup>&</sup>lt;sup>5</sup> The channel is degrading.

<sup>&</sup>lt;sup>6</sup> There is a minor erosion at the end of the left wingwall at Abutment 1.

<sup>&</sup>lt;sup>7</sup> Same as 1987.

<sup>&</sup>lt;sup>8</sup> There is an erosion hole at Abutment 2 left edge of deck.

#### BASIN AND DISCHARGE

The watershed draining to the bridge is 18.2 square miles as shown in Figure 3. The average annual rainfall for the watershed is approximately 25 inches per year<sup>9</sup>. Sand Creek carries flow southwesterly to the bridge site.



Figure 3. Basin contributing to the bridge (USGS streamstats)

Discharge at the bridge reach was calculated using a regression analysis as outlined in *Methods for Determining Magnitude and Frequency of Floods in California, Based on Data through Water Year 2006* (USGS SIR 2012-5113) and a HEC-HMS analysis.

The regression and HEC-HMS analyses yielded the discharge estimates shown in Table 3.



<sup>9</sup> www.streamstatsags.cr.usgs.gov (U.S.G.S.)

Table 3. Regression and HEC-HMS analyses results

|            | Discharge (cfs) |        |  |  |  |
|------------|-----------------|--------|--|--|--|
| Method     | 50-yr           | 100-yr |  |  |  |
| Regression | 1,739           | 2,185  |  |  |  |
| HEC-HMS    | 2,770           | 3,345  |  |  |  |

The results from the HEC-HMS analysis are considered conservative when compared to the regression analysis and were used for design as shown in Table 4. A complete summary of the regression and HEC-HMS analysis is included in Appendix B.

#### Table 4. Discharges used for design

|                   | Design | Base  |
|-------------------|--------|-------|
| Frequency (Years) | 50     | 100   |
| Discharge (cfs)   | 2,770  | 3,345 |



#### HEC-RAS ANALYSIS

Hydraulic parameters (water surface elevations and velocity) were obtained from the U.S. Army Corps of Engineers HEC-RAS (Hydraulic Engineering Center River Analysis System) version 4.1.0 model based on: 1) survey information supplied by BKF Engineers, 2) as-built data contained in the bridge maintenance records provided by Caltrans, and 3) a field investigation by Avila and Associates on June 17, 2016. Cross sections surveyed for the HEC-RAS model are shown in Figure 4.

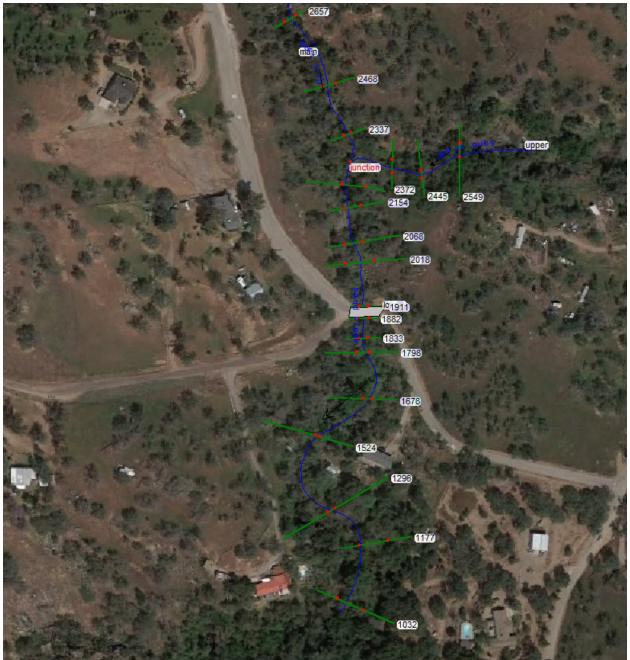



Figure 4. Plan view of HEC-RAS cross section



#### **Existing Conditions**

The Manning "n" values of 0.045 for the channel and 0.055 for the overbanks were used in the model. These are consistent with the USGS estimates (HH Barnes, 1967) and field reviews by Avila and Associates as shown in Figure 5.



Figure 5. Looking upstream at the channel. The creek bottom is heavily vegetated and the bank and overbank areas are vegetated with higher manning "n" values.

The existing bridge was input into the model as a single-span bridge with a minimum soffit elevation of 951.2 feet, as illustrated in Figure 6.



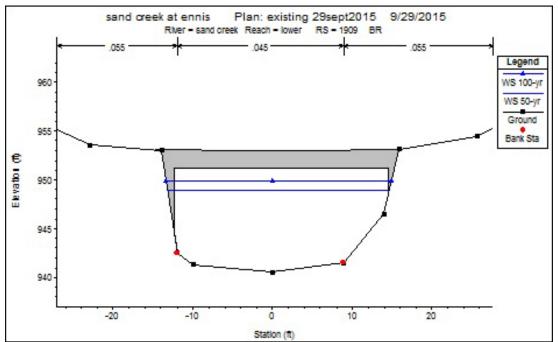



Figure 6. HEC-RAS cross section for the upstream existing conditions for the 50-100-year Q's

#### Starting Water Surface Elevation

Various starting water surface elevations were evaluated. In all cases, the WSE profile converged approximately 200 feet downstream from the bridge as shown in Figure 7.

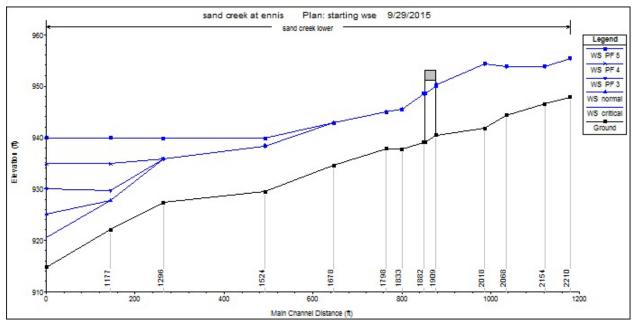
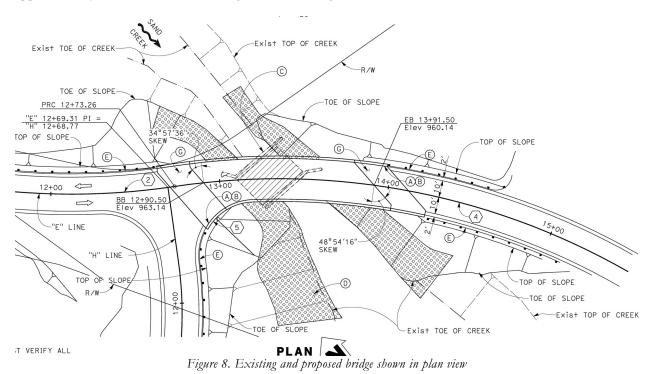




Figure 7. Starting Water Surface Elevation convergence for the 100-year discharge



#### Proposed Bridge Model

The HEC-RAS model was re-run after replacing the existing bridge with the proposed bridge which is a 101-foot single-span bridge. The proposed bridge will be approximately 70 feet longer than the existing bridge. The minimum soffit elevation of the proposed bridge is 955.6. Compared to the minimum soffit elevation of 951.2 for the existing bridge, the bridge will be approximately 4.4 ft higher. The bridge will be approximately 3 feet wider than existing as shown in Figure 8.



Based on the General Plan (Appendix A), there is some grading proposed for the banks of the channel in the vicinity of the bridge as shown in Figure 8.

As shown in Figure 9 and close up in Figure 10, the water surface elevations for the proposed bridge for the 50-year and 100-year discharges are lower or not significantly changed from existing. Through the bridge reaches, however, the water surface elevations are slightly higher for the proposed bridge. The increase is most likely due to the shorter existing bridge contracting the section creating a sharper drawdown curve.



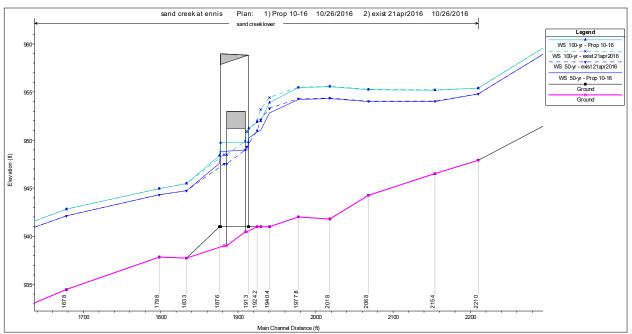



Figure 9. 50--year and 100-yr water surface elevation comparison existing vs. Proposed bridge

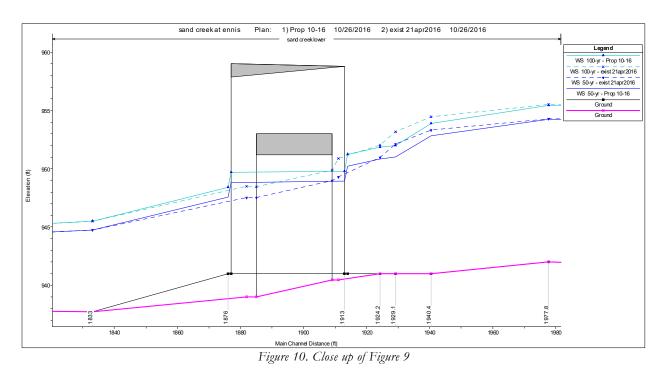



Table 5 shows a comparison of the 100-yr water surface elevations for the proposed bridge to the existing.



| Station                         | Existing | Proposed | Difference |
|---------------------------------|----------|----------|------------|
| 1678                            | 942.81   | 942.81   | 0.00       |
| 1798                            | 944.98   | 944.99   | 0.01       |
| 1833                            | 945.50   | 945.51   | 0.00       |
| Downstream Proposed Bridge 1877 |          | 949.72   |            |
| Downstream Existing Bridge 1885 | 948.48   |          |            |
| Upstream Existing Bridge 1909   | 949.87   |          |            |
| Upstream Proposed Bridge 1913   |          | 949.80   |            |
| 1924.2                          | 952.02   | 951.84   | -0.17      |
| 1929.1                          | 953.19   | 951.99   | -1.21      |
| 1940.4                          | 954.46   | 953.89   | -0.57      |
| 1977.8                          | 955.51   | 955.44   | -0.06      |

Table 5. 100 yr WSE comparisons for the proposed bridge

See Appendix C for detailed HEC-RAS output and Appendix D for the Flood of Record.

#### HYDRAULIC CRITERIA

Chapter 820 of the Caltrans Highway Design Manual (HDM) delineates the hydraulic design criteria for bridges (Caltrans, 2020). The basic HDM rule for hydraulic design is that bridges should be designed to pass the  $Q_{50}$  with sufficient freeboard and convey the  $Q_{100}$  without freeboard. Exceptions may be granted if the bridge designer can provide sufficient evidence that less freeboard is needed. The HDM notes that 2 feet of freeboard is often assumed to be appropriate for preliminary bridge designs, but leaves the recommendation for freeboard to the judgment of the hydraulic engineer based primarily upon the debris anticipated at the bridge.

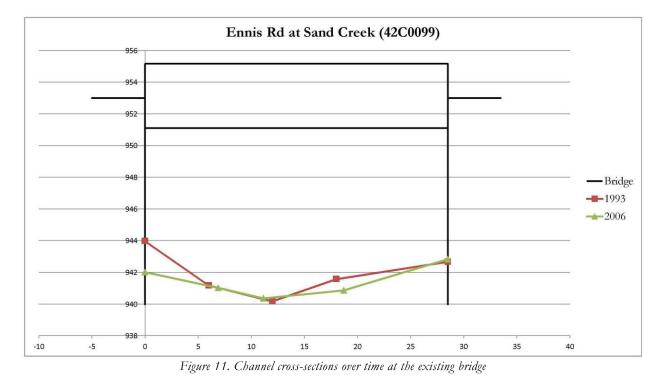
Since the minimum soffit elevation under proposed conditions is 955.6, 5.4 feet of freeboard will be provided above the 50-year water surface elevation and 4.4 feet above the 100-year water surface elevation which meets the HDM criteria.

The Central Valley Flood Protection Board (CVFPB), however, has jurisdiction over this river (California Code of Regulations Title 23, Article 8, Section 112) and requires 3 feet of freeboard on the 100-year discharge. Since the proposed bridge will meet the criteria, no variance will be required.

#### DRIFT

Avila and Associates researched the available Bridge Maintenance Reports for the existing bridge to determine if floating debris catches on the bridge. There were no instances of debris being caught on the bridge noted.

The proposed bridge will improve the hydraulics by providing more available flow area due to the raised roadway and longer bridge spans which will also reduce the potential for drift accumulation.




#### SCOUR

The Ennis Road Bridge was determined to have no significant scour problems by Caltrans and the Item 113 was rated an "8" meaning bridge foundation determined to be not scour critical.

Available bridge cross-section data since 1993 indicates that there has been no history of channel bed degradation at the bridge, as shown in Figure 11.

According to the Draft Geotechnical Report, two borings encountered predominately decomposed granite bedrock or colluvium in the upper 7-8 feet. It is assumed that the foundations will be embedded into rock and no scour analysis will be needed.



#### BANK PROTECTION

The FHWA Hydraulic Engineering Circular No. 23 (HEC 23) guidelines for rock slope protection (RSP) which were adopted by the California Bank and Shore Protection Committee were used to size the rock riprap (Lagasse et al. 2009). The RSP sizes are outlined Table 5. See Appendix E for rock slope protection.

Table 5. Rock Slope Protection based upon HEC-23

| Velocity | D50    | Thickness | Class | Size | Extents* |
|----------|--------|-----------|-------|------|----------|
| ft/sec   | inches | feet      |       | Tons | feet     |
| 13.3     | 35.6   | 4.5       | IX    | 2    | 25       |

\* Extents refer to the extent along the roadway embankment and in front of the abutments, the toe will be keyed into the bed and/or mounded



The required RSP is size and resulting extents are large. Thus, Articulated Concrete Blocks (ACB) as shown in Figure 12, were chosen to provide bank protection. The hydraulic parameters for the ACBs were provided for the use of the ACB manufacturer in the Technical Memorandum included in Appendix F.

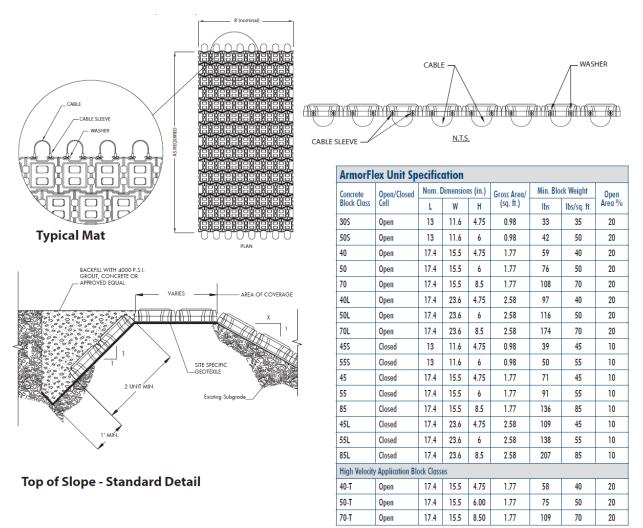



Figure 12. Articulated Concrete block (from http://www.conteches.com/products/erosion-control/hard-armor/armorflex)



#### SUMMARY TABLES

The following Hydrologic Summary Table is provided for your use for placement on the Foundation Plan:

|                                                 | Design | Base  | Flood of Record |
|-------------------------------------------------|--------|-------|-----------------|
| Frequency (Years)                               | 50     | 100   | < 50            |
| Discharge (Cubic feet per second)               | 2,770  | 3,345 | 2,200           |
| Water Surface (Elevation at u/s face of Bridge) | 950.2  | 951.2 | 949.2           |
|                                                 |        |       | 1 1 1           |

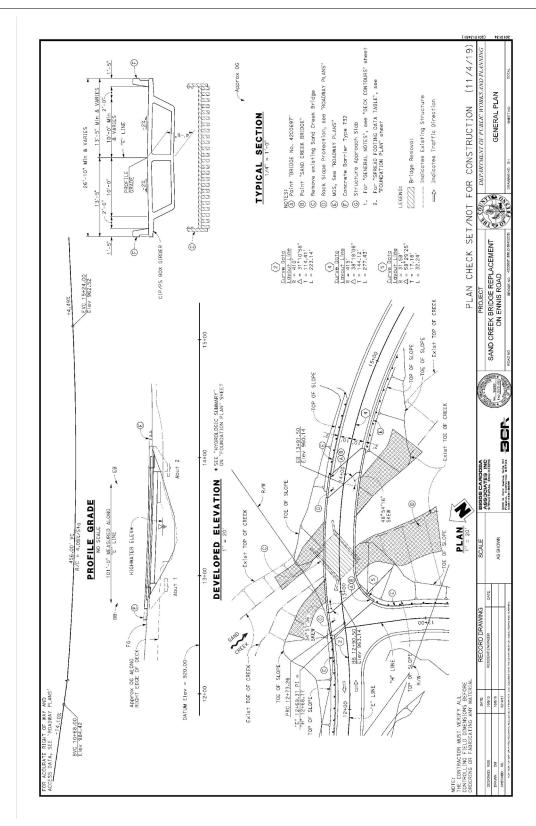
#### Drainage Area: 18.2 Square miles

Flood plain data are based upon information available when the plans were prepared and are shown to meet Federal requirements. The accuracy of said information is not warranted by the County and interested or affected parties should make their own investigation.

#### The following Scour Data Table is provided for placement on the Foundation Plan

| Support No.                                                                       | Long Term (Degradation and Contraction) Scour | Short Term (Local) Scour |  |  |  |  |  |
|-----------------------------------------------------------------------------------|-----------------------------------------------|--------------------------|--|--|--|--|--|
| ~ ~                                                                               | Elevation (ft)                                | Depth (ft)               |  |  |  |  |  |
| A1                                                                                | n/a*                                          | n/a*                     |  |  |  |  |  |
| A2                                                                                | n/a*                                          | n/a*                     |  |  |  |  |  |
| * The foundations will be embedded into rock thus no scour analysis was required. |                                               |                          |  |  |  |  |  |




#### REFERENCES

- Brown, Scott A. and Eric S. Clyde. 1989. "Design of Riprap Revetment." Federal Highway Administration Report No. FHWA-IP-89-016 HEC-11. March.
- California Department of Transportation (Caltrans). 2020. "Local Assistance Procedures Manual, Processing Procedures for Implementing Federal and/or State Funded local Public Transportation Projects." January.
- California Department of Transportation (Caltrans). 2020. "Highway Design Manual Chapter 820." March
- California Department of Transportation (Caltrans). 2012 Maintenance Records and As-Built Plans for Ennis Road Bridge at Sand Creek Br # 42C0697.
- Federal Highway Administration (FHWA). 1995. "Recording and Coding Guide for the Structure Inventory and Appraisal of the Nation's Bridges". Federal Highway Administration Report No. FHWA-RD-96-0001. December.
- H.H. Barnes, Jr. 1967 United States Geological Survey Water Supply Paper 1849.
- Lagasse, P.F. Clopper, P.E., Pagan-Ortiz, J.E., Zeverbergen, L.W., Arneson, L.A., Schall, J.D., Girard, L. G. 2009. "Bridge Scour and Stream Instability Countermeasures. Volumes 1 and 2. Third Edition." Hydraulic Engineering Circular No. 23. Federal Highway Administration Publication No. FHWA-NHI-09-112, Washington, D.C. September.
- Parikh Consultants. 2015. "Preliminary Foundation Report for the Sand Creek Bridge at Ennis Road (replace) Fresno County, California" October 5.
- US. Department of the Interior, Geological Survey. "Guidelines for Determining Flood Flow Frequency, Bulletin #17B of the Hydrology Subcommittee" Revised September 1981.



#### APPENDICES





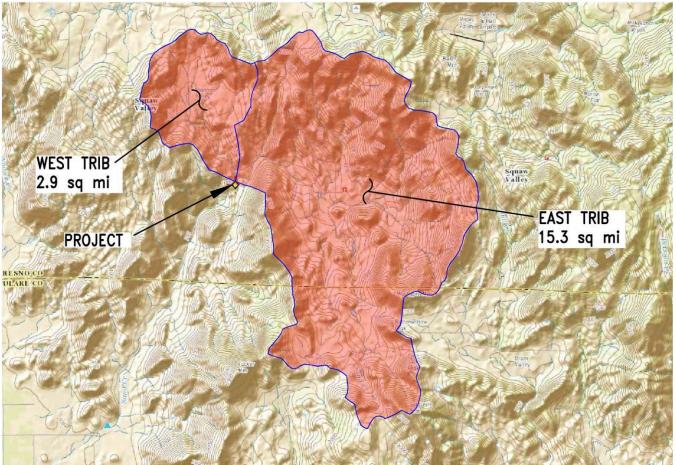
#### APPENDIX B – REGRESSION AND HEC-HMS DISCHARGES

#### **REGRESSION ANALYSIS**

Sierra Region

Area (A) = 18.2 sq mi (per USGS Streamstats)

Mean Annual Precipitation (MAP) = 25 (per USGS Streamstats)

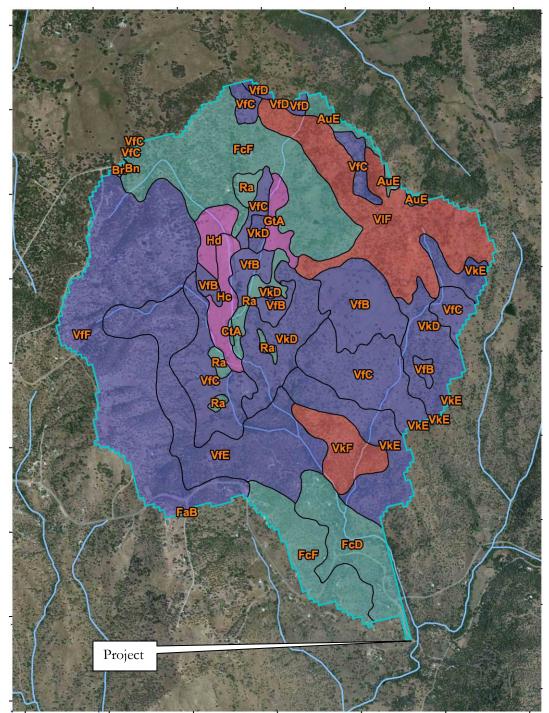

Mean watershed elevation (E) = 1726 (per USGS Streamstats)

|     |      | Α    |       |          | MAP |      |          |        | Ε    |          | Q (cfs) | Recurrence |
|-----|------|------|-------|----------|-----|------|----------|--------|------|----------|---------|------------|
| 2   | 2.43 | 18.2 | 0.924 | 35.47417 | 25  | 2.06 | 758.1522 | -0.646 | 1726 | 0.008107 | 218     | 2          |
| 5   | 11.6 | 18.2 | 0.907 | 161.1917 | 25  | 1.7  | 237.9567 | -0.566 | 1726 | 0.014718 | 565     | 5          |
| 10  | 17.2 | 18.2 | 0.896 | 231.5008 | 25  | 1.54 | 142.1764 | -0.486 | 1726 | 0.026718 | 879     | 10         |
| 25  | 20.7 | 18.2 | 0.885 | 269.8569 | 25  | 1.39 | 87.72767 | -0.386 | 1726 | 0.056299 | 1,333   | 25         |
| 50  | 21.1 | 18.2 | 0.879 | 270.3244 | 25  | 1.31 | 67.8112  | -0.316 | 1726 | 0.094863 | 1,739   | 50         |
| 100 | 20.6 | 18.2 | 0.874 | 260.1175 | 25  | 1.24 | 54.13095 | -0.25  | 1726 | 0.155146 | 2,185   | 100        |
| 200 | 19.4 | 18.2 | 0.87  | 242.1385 | 25  | 1.18 | 44.62407 | -0.188 | 1726 | 0.246284 | 2,661   | 200        |
| 500 | 17.4 | 18.2 | 0.865 | 214.0479 | 25  | 1.11 | 35.6216  | -0.11  | 1726 | 0.440479 | 3,359   | 500        |

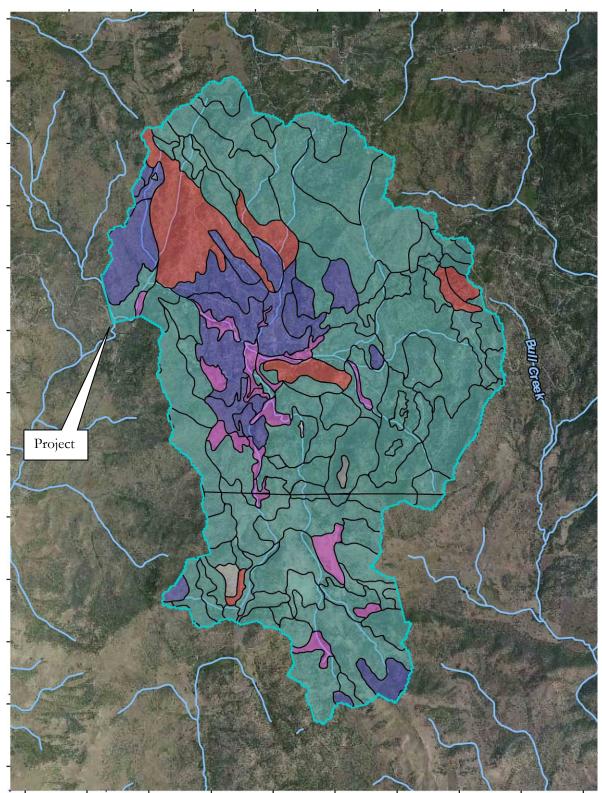
Source: Methods for Determining Magnitude and Frequency of Floods in California, Based on Data through Water Year 2006 (USGS SIR 2012-5113)

### HEC-HMS ANALYSIS

A hydrologic analysis was performed using computer program HEC-HMS. The watershed was broken up into sub basins as shown on the hydrology map.




<u>Hydrology Map</u>

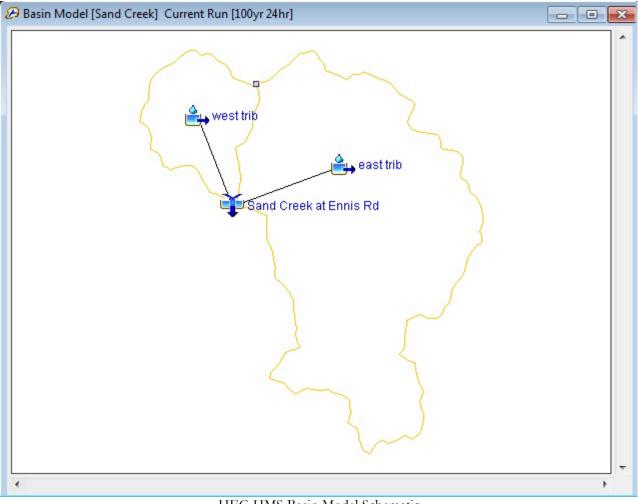

The following methods and parameters were used for the analysis:

- SCS Curve Number loss method
  - Initial Abstraction = 0.2
- SCS Unit Hydrograph transform method
  - o Type 1A storm distribution
  - Lag time = 0.6 x time of concentration

The Sand Creek watershed is composed of soils from all four hydrologic soils groups as shown on the Watershed Soils Map for each sub-basin.



Magenta = Class A, Blue = Class B, Aqua = Class C, Salmon = Class D, Gray = other West Trib Sub-Basin Watershed Soils Map (USDA NRCS Web Soil Survey)




Magenta = Class A, Blue = Class B, Aqua = Class C, Salmon = Class D, Gray = other <u>East Trib Sub-Basin Watershed Soils Map (USDA NRCS Web Soil Survey)</u>

By sub-basin, the breakdown of soils class, CN number, and composite CN is:

|           | Soil  |         |                 |    |
|-----------|-------|---------|-----------------|----|
| Sub-Basin | Class | Area    | % of Total      | CN |
|           |       | (acres) | (%)             |    |
|           |       |         |                 |    |
| West Trib |       |         |                 |    |
|           | А     | 68.9    | 3.8             | 36 |
|           |       |         |                 |    |
|           | В     | 1090.0  | 59.8            | 65 |
|           |       |         |                 |    |
|           | С     | 424.9   | 23.3            | 76 |
|           |       |         |                 |    |
|           | D     | 237.8   | 13.1            | 82 |
|           |       |         |                 |    |
|           | Other | 0.0     | 0.0             | 99 |
|           |       |         | _               |    |
|           |       |         | Composite<br>CN | 69 |
|           |       |         |                 |    |
| East Trib |       |         |                 |    |
|           | А     | 411.4   | 4.2             | 36 |
|           |       |         |                 |    |
|           | В     | 1354.8  | 13.9            | 65 |
|           |       |         |                 |    |
|           | С     | 7166.3  | 73.4            | 76 |
|           |       |         |                 |    |
|           | D     | 786     | 8.0             | 82 |
|           |       |         |                 |    |
|           | Other | 50.2    | 0.5             | 99 |
|           |       |         |                 |    |
|           |       |         | Composite<br>CN | 73 |

Precipitation data was obtained from the NOAA's National Weather Service Hydrometerological Design Studies Center Precipitation Frequency Data Server by manually entering the latitude and longitude of the centroid of the watershed area. http://hdsc.nws.noaa.gov/hdsc/pfds/pfds\_map\_cont.html?bkmrk=ca (NOAA Atlas 14) For this analysis, the 24 hour precipitation depths for the 50-yr and 100-yr storms according to NOAA Atlas 14 are 4.80 inches and 5.40 inches respectively.



HEC-HMS Basin Model Schematic

### Results:

| Start of R<br>End of R<br>Compute |                        | 00:05 Met               |                  | Sand Creek<br>50yr 24hr<br>24 hours |
|-----------------------------------|------------------------|-------------------------|------------------|-------------------------------------|
| Show Elements: All E              | lements 🚽 Ve           | olume Units: 🔘 I        | N 🔘 AC-FT        | Sorting: Hydrologic 👻               |
| Hydrologic<br>Element             | Drainage Area<br>(MI2) | Peak Discharge<br>(CFS) | Time of Peak     | Volume<br>(IN)                      |
| east trib                         | 15.2636                | 2459.9                  | 01Jan2015, 10:15 | 2.351                               |
| west trib                         | 2.8463                 | 672.2                   | 01Jan2015, 08:30 | 2.282                               |
| Sand Creek at Ennis R             | d 18.1099              | 2768.1                  | 01Jan2015, 10:10 | 2.340                               |
|                                   |                        |                         |                  |                                     |

<u>50-yr 24 hr</u>

| End of Run              | n: 01Jan2015,<br>: 02Jan2015,<br>ime: 29Sep2015, | 00:05 Met               | in Model:<br>teorologic Model:<br>htrol Specifications: | -        | thr            |   |
|-------------------------|--------------------------------------------------|-------------------------|---------------------------------------------------------|----------|----------------|---|
| Show Elements: All Eler | ments 👻 Vo                                       | olume Units: 💿 I        | N 🔘 AC-FT                                               | Sorting: | Hydrologic     | • |
| Hydrologic<br>Element   | Drainage Area<br>(MI2)                           | Peak Discharge<br>(CFS) | Time of Peak                                            |          | Volume<br>(IN) |   |
| east trib               | 15.2636                                          | 2971.9                  | 01Jan2015, 10:15                                        | 5        | 2.807          | 1 |
| west trib               | 2.8463                                           | 818.9                   | 01Jan2015, 08:30                                        | 0 2.737  |                | 1 |
| Sand Creek at Ennis Rd  | 18.1099                                          | 3344.9                  | 01Jan2015, 10:05                                        | 5        | 2.796          |   |
|                         |                                                  |                         |                                                         |          |                |   |

#### APPENDIX C – HEC-RAS OUTPUT

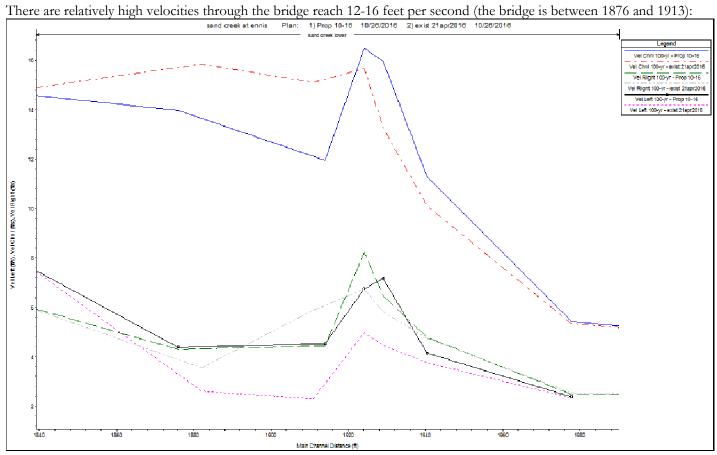
# Existing Conditions HEC-RAS Plan: exist 21apr2016

| River      | Reach          | River Sta    | Profile         | Q Total            | Min Ch El        | W.S. Elev        | Crit W.S.        | E.G. Elev        | E.G. Slope | Vel Chnl       | Flow Area        | Top Width      | Froude # Chl |
|------------|----------------|--------------|-----------------|--------------------|------------------|------------------|------------------|------------------|------------|----------------|------------------|----------------|--------------|
|            |                |              |                 | (cfs)              | (ft)             | (ft)             | (ft)             | (ft)             | (ft/ft)    | (ft/s)         | (sq ft)          | (ft)           |              |
| west trib  | main           | 2657         | 50-yr           | 672.00             | 994.37           | 998.83           | 998.83           | 1000.17          | 0.023129   | 9.31           | 72.20            | 26.93          | 1.00         |
| west trib  | main           | 2657         | 100-yr          | 820.00             | 994.37           | 999.27           | 999.27           | 1000.73          | 0.022590   | 9.71           | 84.45            | 29.00          | 1.00         |
| west trib  | main           | 2468         | 50-yr           | 672.00             | 978.70           | 983.60           | 983.60           | 984.94           | 0.023385   | 9.27           | 72.49            | 27.28          | 1.00         |
| west trib  | main           | 2468         | 100-yr          | 820.00             | 978.70           | 984.04           | 984.04           | 985.49           | 0.022686   | 9.64           | 85.07            | 29.49          | 1.00         |
| west trib  | main           | 2337         | 50-yr           | 672.00             | 961.16           | 966.51           | 966.51           | 968.11           | 0.019006   | 10.26          | 69.46            | 24.38          | 0.93         |
| west trib  | main           | 2337         | 100-yr          | 820.00             | 961.16           | 967.03           | 967.03           | 968.77           | 0.017745   | 10.80          | 82.67            | 26.87          | 0.92         |
| sand creek | upper          | 2549         | 50-yr           | 2460.00            | 959.64           | 967.95           |                  | 969.31           | 0.008220   | 9.86           | 295.10           | 69.95          | 0.69         |
| sand creek | upper          | 2549         | 100-yr          | 2970.00            | 959.64           | 968.92           |                  | 970.24           | 0.006854   | 9.89           | 366.39           | 77.33          | 0.64         |
| sand creek | upper          | 2445         | 50-yr           | 2460.00            | 956.00           | 965.39           | 965.39           | 968.09           | 0.013647   | 14.09          | 213.57           | 44.30          | 0.90         |
| sand creek | upper          | 2445         | 100-yr          | 2970.00            | 956.00           | 966.26           | 966.26           | 969.13           | 0.012916   | 14.09          | 254.38           | 49.63          | 0.89         |
| cand crook | uppor          | 2372         | 50-yr           | 2460.00            | 954.73           | 962.75           | 962.75           | 965.21           | 0.015515   | 12.76          | 206.71           | 46.92          | 0.94         |
| sand creek | upper<br>upper | 2372         | 100-yr          | 2460.00            | 954.73<br>954.73 | 963.51           | 962.75<br>963.51 | 965.21<br>966.17 | 0.015515   | 13.38          | 208.71           | 40.92<br>50.96 | 0.92         |
| sand creek | lower          | 2210         | 50-yr           | 2770.00            | 947.91           | 954.79           | 954.79           | 956.94           | 0.019847   | 11.75          | 235.83           | 55.28          | 1.00         |
| sand creek | lower<br>lower | 2210         | 100-yr          | 3345.00            | 947.91           | 955.38           | 955.38           | 957.79           | 0.019047   | 12.44          | 269.11           | 57.34          | 1.00         |
|            | •              | 0151         | 50              |                    | 0.10.50          | 054.04           |                  | 055.05           |            | 10.50          | 000 75           | 57.00          |              |
| sand creek | lower<br>lower | 2154<br>2154 | 50-yr<br>100-yr | 2770.00<br>3345.00 | 946.52<br>946.52 | 954.04<br>955.22 |                  | 955.65<br>956.78 | 0.008933   | 10.53<br>10.46 | 290.75<br>360.78 | 57.33<br>61.56 | 0.74         |
|            |                |              |                 |                    |                  |                  |                  |                  |            |                |                  |                |              |
| sand creek | lower<br>lower | 2068<br>2068 | 50-yr<br>100-γr | 2770.00<br>3345.00 | 944.27<br>944.27 | 954.06<br>955.27 |                  | 954.96<br>956.19 | 0.003788   | 7.82<br>8.01   | 388.81<br>467.14 | 62.90<br>67.14 | 0.50         |
|            |                |              |                 |                    |                  |                  |                  |                  | 0.0002.11  |                |                  |                |              |
| sand creek | lower          | 2018         | 50-yr           | 2770.00            | 941.82           | 954.38           |                  | 954.69           | 0.001067   | 4.56           | 644.49           | 79.41          | 0.27         |
| sand creek | lower          | 2018         | 100-yr          | 3345.00            | 941.82           | 955.59           |                  | 955.93           | 0.001056   | 4.80           | 743.22           | 83.76          | 0.27         |
| sand creek | lower          | 1977.8       | 50-yr           | 2770.00            | 942.00           | 954.30           |                  | 954.65           | 0.000968   | 5.02           | 657.44           | 81.46          | 0.27         |
| sand creek | lower          | 1977.8       | 100-yr          | 3345.00            | 942.00           | 955.51           |                  | 955.89           | 0.000954   | 5.34           | 758.00           | 85.85          | 0.27         |
| sand creek | lower          | 1940.4       | 50-yr           | 2770.00            | 941.00           | 953.30           |                  | 954.50           | 0.004230   | 9.65           | 365.95           | 55.86          | 0.53         |
| sand creek | lower          | 1940.4       | 100-yr          | 3345.00            | 941.00           | 954.46           |                  | 955.73           | 0.004024   | 10.11          | 433.83           | 61.92          | 0.53         |
| sand creek | lower          | 1929.1       | 50-yr           | 2770.00            | 941.00           | 952.12           | 951.01           | 954.33           | 0.008496   | 12.67          | 264.05           | 42.87          | 0.74         |
| sand creek | lower          | 1929.1       | 100-yr          | 3345.00            | 941.00           | 953.19           | 951.99           | 955.56           | 0.008052   | 13.28          | 312.20           | 46.90          | 0.73         |
| sand creek | lower          | 1924.2       | 50-yr           | 2770.00            | 941.00           | 950.99           | 950.99           | 954.18           | 0.014143   | 15.02          | 215.57           | 37.62          | 0.93         |
| sand creek | lower          | 1924.2       | 100-yr          | 3345.00            | 941.00           | 952.02           | 952.02           | 955.42           | 0.013124   | 15.67          | 256.07           | 41.35          | 0.91         |
| sand creek | lower          | 1911         | 50-yr           | 2770.00            | 940.47           | 949.32           | 948.89           | 952.62           | 0.012552   | 14.98          | 205.33           | 27.96          | 0.92         |
| sand creek | lower          | 1911         | 100-yr          | 3345.00            | 940.47           | 950.89           | 949.86           | 954.22           | 0.010124   | 15.10          | 249.84           | 28.72          | 0.85         |
| sand creek | lower          | 1909         |                 | Bridge             |                  |                  |                  |                  |            |                |                  |                |              |
|            |                |              |                 |                    |                  |                  |                  |                  |            |                |                  |                |              |

| River      | Reach | River Sta | Profile | Q Total | Min Ch El | W.S. Elev | Crit W.S. | E.G. Elev | E.G. Slope | Vel Chnl | Flow Area | Top Width | Froude # Chl |
|------------|-------|-----------|---------|---------|-----------|-----------|-----------|-----------|------------|----------|-----------|-----------|--------------|
|            |       |           |         | (cfs)   | (ft)      | (ft)      | (ft)      | (ft)      | (ft/ft)    | (ft/s)   | (sq ft)   | (ft)      |              |
| sand creek | lower | 1882      | 50-yr   | 2770.00 | 939.03    | 947.55    | 947.55    | 951.00    | 0.015555   | 14.96    | 192.37    | 29.67     | 0.99         |
| sand creek | lower | 1882      | 100-yr  | 3345.00 | 939.03    | 948.52    | 948.52    | 952.37    | 0.014703   | 15.84    | 221.98    | 31.44     | 0.98         |
| sand creek | lower | 1833      | 50-yr   | 2770.00 | 937.72    | 944.75    | 944.75    | 947.30    | 0.015218   | 13.99    | 240.42    | 49.63     | 0.97         |
| sand creek | lower | 1833      | 100-yr  | 3345.00 | 937.72    | 945.50    | 945.50    | 948.30    | 0.014609   | 14.76    | 278.79    | 51.98     | 0.97         |
| sand creek | lower | 1798      | 50-yr   | 2770.00 | 937.87    | 944.32    | 944.32    | 946.47    | 0.014765   | 12.89    | 265.94    | 65.99     | 0.95         |
| sand creek | lower | 1798      | 100-yr  | 3345.00 | 937.87    | 944.98    | 944.98    | 947.31    | 0.014111   | 13.55    | 311.27    | 70.65     | 0.94         |
| sand creek | lower | 1678      | 50-yr   | 2770.00 | 934.48    | 942.13    | 942.13    | 944.37    | 0.013463   | 13.99    | 270.14    | 60.59     | 0.93         |
| sand creek | lower | 1678      | 100-yr  | 3345.00 | 934.48    | 942.81    | 942.81    | 945.26    | 0.013324   | 14.79    | 312.41    | 64.14     | 0.94         |
| sand creek | lower | 1524      | 50-yr   | 2770.00 | 929.37    | 937.80    |           | 939.57    | 0.013628   | 14.72    | 294.29    | 63.21     | 0.93         |
| sand creek | lower | 1524      | 100-yr  | 3345.00 | 929.37    | 938.33    | 938.01    | 940.39    | 0.014731   | 15.98    | 328.27    | 65.91     | 0.98         |
| sand creek | lower | 1296      | 50-yr   | 2770.00 | 927.25    | 935.42    | 935.42    | 936.98    | 0.009226   | 12.38    | 365.79    | 109.56    | 0.78         |
| sand creek | lower | 1296      | 100-yr  | 3345.00 | 927.25    | 935.88    | 935.88    | 937.58    | 0.009724   | 13.21    | 417.17    | 112.45    | 0.81         |
| sand creek | lower | 1177      | 50-yr   | 2770.00 | 921.94    | 927.27    | 927.27    | 928.94    | 0.020045   | 10.60    | 275.24    | 85.26     | 1.00         |
| sand creek | lower | 1177      | 100-yr  | 3345.00 | 921.94    | 927.74    | 927.74    | 929.61    | 0.018974   | 11.22    | 315.56    | 86.90     | 1.00         |
| sand creek | lower | 1032      | 50-yr   | 2770.00 | 914.78    | 920.00    | 920.00    | 921.88    | 0.019967   | 11.00    | 251.89    | 68.24     | 1.01         |
| sand creek | lower | 1032      | 100-yr  | 3345.00 | 914.78    | 920.53    | 920.53    | 922.63    | 0.018623   | 11.61    | 288.69    | 70.87     | 1.00         |

## Proposed Conditions HEC-RAS Plan: Prop 10-16

| River      | Reach | River Sta | Profile | Q Total | Min Ch El | W.S. Elev | Crit W.S. | E.G. Elev | E.G. Slope | Vel Chnl | Flow Area | Top Width | Froude # Chl |
|------------|-------|-----------|---------|---------|-----------|-----------|-----------|-----------|------------|----------|-----------|-----------|--------------|
|            |       |           |         | (cfs)   | (ft)      | (ft)      | (ft)      | (ft)      | (ft/ft)    | (ft/s)   | (sq ft)   | (ft)      |              |
| west trib  | main  | 2657      | 50-yr   | 672.00  | 994.37    | 998.83    | 998.83    | 1000.17   | 0.023129   | 9.31     | 72.20     | 26.93     | 1.0          |
| west trib  | main  | 2657      | 100-yr  | 820.00  | 994.37    | 999.27    | 999.27    | 1000.73   | 0.022590   | 9.71     | 84.45     | 29.00     | 1.00         |
|            |       |           |         |         |           |           |           |           |            |          |           |           |              |
| west trib  | main  | 2468      | 50-yr   | 672.00  | 978.70    | 983.60    | 983.60    | 984.94    | 0.023385   | 9.27     | 72.49     | 27.28     | 1.00         |
| west trib  | main  | 2468      | 100-yr  | 820.00  | 978.70    | 984.04    | 984.04    | 985.49    | 0.022686   | 9.64     | 85.07     | 29.49     | 1.00         |
| west trib  | main  | 2337      | 50-yr   | 672.00  | 961.16    | 966.51    | 966.51    | 968.11    | 0.019006   | 10.26    | 69.46     | 24.38     | 0.93         |
| west trib  | main  | 2337      | 100-yr  | 820.00  | 961.16    | 967.03    | 967.03    | 968.77    | 0.017745   | 10.80    | 82.67     | 26.87     | 0.93         |
| cond erect |       | 25.40     | 50 x/r  | 2460.00 | 050.64    | 067.05    |           | 060.31    | 0.008220   | 0.96     | 295.10    | 60.05     | 0.69         |
| sand creek | upper | 2549      | 50-yr   |         | 959.64    | 967.95    |           | 969.31    |            | 9.86     |           | 69.95     |              |
| sand creek | upper | 2549      | 100-yr  | 2970.00 | 959.64    | 968.92    |           | 970.24    | 0.006854   | 9.89     | 366.39    | 77.33     | 0.64         |
| sand creek | upper | 2445      | 50-yr   | 2460.00 | 956.00    | 965.39    | 965.39    | 968.09    | 0.013647   | 14.09    | 213.57    | 44.30     | 0.90         |
| sand creek | upper | 2445      | 100-yr  | 2970.00 | 956.00    | 966.26    | 966.26    | 969.13    | 0.012916   | 14.73    | 254.38    | 49.63     | 0.89         |
| sand creek | upper | 2372      | 50-yr   | 2460.00 | 954.73    | 962.75    | 962.75    | 965.21    | 0.015515   | 12.76    | 206.71    | 46.92     | 0.94         |
| sand creek | upper | 2372      | 100-yr  | 2970.00 | 954.73    | 963.51    | 963.51    | 966.17    | 0.014471   | 13.38    | 243.80    | 50.96     | 0.92         |
|            |       |           |         |         |           |           |           |           |            |          |           |           |              |
| sand creek | lower | 2210      | 50-yr   | 2770.00 | 947.91    | 954.79    | 954.79    | 956.94    | 0.019847   | 11.75    | 235.83    | 55.28     | 1.00         |
| sand creek | lower | 2210      | 100-yr  | 3345.00 | 947.91    | 955.38    | 955.38    | 957.79    | 0.019039   | 12.44    | 269.11    | 57.34     | 1.00         |
| sand creek | lower | 2154      | 50-yr   | 2770.00 | 946.52    | 953.98    |           | 955.63    | 0.009216   | 10.63    | 287.64    | 57.14     | 0.75         |
| sand creek | lower | 2154      | 100-yr  | 3345.00 | 946.52    | 955.16    |           | 956.76    | 0.007204   | 10.55    | 357.34    | 61.36     | 0.69         |
|            |       |           |         |         |           |           |           |           |            |          |           |           |              |
| sand creek | lower | 2068      | 50-yr   | 2770.00 | 944.27    | 954.00    |           | 954.92    | 0.003888   | 7.88     | 385.32    | 62.70     | 0.50         |
| sand creek | lower | 2068      | 100-yr  | 3345.00 | 944.27    | 955.21    |           | 956.15    | 0.003353   | 8.07     | 463.40    | 66.95     | 0.48         |
| sand creek | lower | 2018      | 50-yr   | 2770.00 | 941.82    | 954.33    |           | 954.64    | 0.001085   | 4.59     | 640.58    | 79.23     | 0.27         |
| sand creek | lower | 2018      | 100-yr  | 3345.00 | 941.82    | 955.54    |           | 955.89    | 0.001072   | 4.83     | 739.01    | 83.58     | 0.27         |
|            |       |           |         |         |           |           |           |           |            |          |           |           |              |
| sand creek | lower | 1977.8    | 50-yr   | 2770.00 | 942.00    | 954.24    |           | 954.60    | 0.001011   | 5.11     | 644.45    | 81.19     | 0.27         |
| sand creek | lower | 1977.8    | 100-yr  | 3345.00 | 942.00    | 955.44    |           | 955.84    | 0.000992   | 5.42     | 744.61    | 85.58     | 0.27         |
| sand creek | lower | 1940.4    | 50-yr   | 2770.00 | 941.00    | 952.82    |           | 954.40    | 0.005525   | 10.64    | 309.53    | 45.95     | 0.61         |
| sand creek | lower | 1940.4    | 100-yr  | 3345.00 | 941.00    | 953.89    | 951.53    | 955.63    | 0.005397   | 11.29    | 360.46    | 49.50     | 0.61         |
| sand creek | lower | 1929.1    | 50-yr   | 2770.00 | 941.00    | 951.02    | 951.02    | 954.15    | 0.014489   | 15.18    | 219.91    | 38.37     | 0.94         |
| sand creek | lower | 1929.1    | 100-yr  | 3345.00 | 941.00    | 951.02    | 951.02    | 955.37    | 0.013745   | 15.94    | 258.61    | 41.50     | 0.93         |
|            |       |           |         |         |           |           |           |           |            |          |           |           |              |
| sand creek | lower | 1924.2    | 50-yr   | 2770.00 | 941.00    | 950.87    | 950.87    | 953.97    | 0.014331   | 15.73    | 226.20    | 39.15     | 0.94         |
| sand creek | lower | 1924.2    | 100-yr  | 3345.00 | 941.00    | 951.84    | 951.84    | 955.18    | 0.013665   | 16.49    | 265.99    | 42.23     | 0.94         |
| sand creek | lower | 1914      | 50-yr   | 2770.00 | 941.00    | 950.23    | 948.94    | 952.13    | 0.008207   | 11.36    | 270.35    | 44.82     | 0.7          |
| sand creek | lower | 1914      | 100-yr  | 3345.00 | 941.00    | 951.23    | 949.78    | 953.30    | 0.007776   | 11.96    | 316.61    | 47.96     | 0.70         |
| sand creek | lower | 1913      |         | Bridge  |           |           |           |           |            |          |           |           |              |
| Sanu Geek  | lower | 1915      |         | Bridge  |           |           |           |           |            |          |           |           |              |


| River      | Reach | River Sta | Profile | Q Total | Min Ch El | W.S. Elev | Crit W.S. | E.G. Elev | E.G. Slope | Vel Chnl | Flow Area | Top Width | Froude # Chl |
|------------|-------|-----------|---------|---------|-----------|-----------|-----------|-----------|------------|----------|-----------|-----------|--------------|
|            |       |           |         | (cfs)   | (ft)      | (ft)      | (ft)      | (ft)      | (ft/ft)    | (ft/s)   | (sq ft)   | (ft)      |              |
| sand creek | lower | 1876      | 50-yr   | 2770.00 | 941.00    | 947.59    | 947.59    | 950.30    | 0.016668   | 13.29    | 216.54    | 43.65     | 0.97         |
| sand creek | lower | 1876      | 100-yr  | 3345.00 | 941.00    | 948.40    | 948.40    | 951.36    | 0.015515   | 13.97    | 252.82    | 46.35     | 0.95         |
| sand creek | lower | 1833      | 50-yr   | 2770.00 | 937.72    | 944.77    | 944.77    | 947.26    | 0.014948   | 13.89    | 243.64    | 50.92     | 0.97         |
| sand creek | lower | 1833      | 100-yr  | 3345.00 | 937.72    | 945.51    | 945.51    | 948.25    | 0.014423   | 14.67    | 282.26    | 53.39     | 0.97         |
| sand creek | lower | 1798      | 50-yr   | 2770.00 | 937.87    | 944.30    | 944.30    | 946.47    | 0.014883   | 12.92    | 264.29    | 65.01     | 0.95         |
| sand creek | lower | 1798      | 100-yr  | 3345.00 | 937.87    | 944.99    | 944.99    | 947.31    | 0.014031   | 13.53    | 310.55    | 69.55     | 0.94         |
| sand creek | lower | 1678      | 50-yr   | 2770.00 | 934.48    | 942.13    | 942.13    | 944.37    | 0.013463   | 13.99    | 270.14    | 60.59     | 0.93         |
| sand creek | lower | 1678      | 100-yr  | 3345.00 | 934.48    | 942.81    | 942.81    | 945.26    | 0.013324   | 14.79    | 312.41    | 64.14     | 0.94         |
| sand creek | lower | 1524      | 50-yr   | 2770.00 | 929.37    | 937.80    |           | 939.57    | 0.013628   | 14.72    | 294.29    | 63.21     | 0.93         |
| sand creek | lower | 1524      | 100-yr  | 3345.00 | 929.37    | 938.33    | 938.01    | 940.39    | 0.014731   | 15.98    | 328.27    | 65.91     | 0.98         |
| sand creek | lower | 1296      | 50-yr   | 2770.00 | 927.25    | 935.42    | 935.42    | 936.98    | 0.009226   | 12.38    | 365.79    | 109.56    | 0.78         |
| sand creek | lower | 1296      | 100-yr  | 3345.00 | 927.25    | 935.88    | 935.88    | 937.58    | 0.009724   | 13.21    | 417.17    | 112.45    | 0.81         |
| sand creek | lower | 1177      | 50-yr   | 2770.00 | 921.94    | 927.27    | 927.27    | 928.94    | 0.020045   | 10.60    | 275.24    | 85.26     | 1.00         |
| sand creek | lower | 1177      | 100-yr  | 3345.00 | 921.94    | 927.74    | 927.74    | 929.61    | 0.018974   | 11.22    | 315.56    | 86.90     | 1.00         |
| sand creek | lower | 1032      | 50-yr   | 2770.00 | 914.78    | 920.00    | 920.00    | 921.88    | 0.019967   | 11.00    | 251.89    | 68.24     | 1.01         |
| sand creek | lower | 1032      | 100-yr  | 3345.00 | 914.78    | 920.53    | 920.53    | 922.63    | 0.018623   | 11.61    | 288.69    | 70.87     | 1.00         |

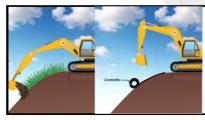
#### APPENDIX D – FLOOD OF RECORD

There is an existing USGS stream gage (Gage #11212000) on Sand Creek downstream from the project. The gage has 38 peak discharges recorded between 1945-1997. The maximum peak discharge recorded by the gage was 3,520 cfs in January 1969. The drainage area at the gage is approximately 31.6 square miles. An area ratio calculation known as a basin transfer was performed to determine the discharge at the project site during the 1969 storm. Results of the basin transfer estimate that the flood of record at the project site is approximately 2,200 cfs which is less than a 50-yr event.



#### APPENDIX E – BANK PROTECTION




Based on HEC-23 (RSP) design, the rock size ends up being 3-ft or 2 ton rock or Class IX.

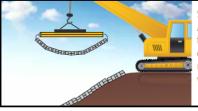
| У              | 5.78  |            |
|----------------|-------|------------|
| К              | 0.89  |            |
| Ss             | 2.65  |            |
| V              | 13.3  |            |
| g              | 32.2  |            |
| V^2/gy         | 0.95  |            |
| K/(Ss-1)       | 3.12  |            |
| D50            | 2.97  | feet       |
|                | 35.61 | inches     |
| Rock thickness |       |            |
| 1.5*D50        | 4.5   | feet       |
|                |       |            |
|                |       | from Table |
| Class          | IX    | 4.1        |

|                                                                                                                                                                                                                      | Table 4.2.                     | Minimum         | and Maxir | num Allow | able Partic | le Weight i | in Pounds.       |        |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------|-----------|-----------|-------------|-------------|------------------|--------|--|
| Class by                                                                                                                                                                                                             | l Riprap<br>/ Median<br>Weight | W <sub>15</sub> |           | w         | 50          | w           | W <sub>100</sub> |        |  |
| Class                                                                                                                                                                                                                | Weight                         | Min             | Max       | Min       | Max         | Min         | Max              | Max    |  |
|                                                                                                                                                                                                                      | 20 lb                          | 4               | 12        | 15        | 27          | 39          | 64               | 140    |  |
| II                                                                                                                                                                                                                   | 60 lb                          | 13              | 39        | 51        | 90          | 130         | 220              | 470    |  |
| III                                                                                                                                                                                                                  | 150 lb                         | 32              | 93        | 120       | 210         | 310         | 510              | 1100   |  |
| IV                                                                                                                                                                                                                   | 300 lb                         | 62              | 180       | 240       | 420         | 600         | 1,000            | 2,200  |  |
| V                                                                                                                                                                                                                    | 1/4 ton                        | 110             | 310       | 410       | 720         | 1,050       | 1,750            | 3,800  |  |
| VI                                                                                                                                                                                                                   | 3/8 ton                        | 170             | 500       | 650       | 1,150       | 1,650       | 2,800            | 6,000  |  |
| VII                                                                                                                                                                                                                  | 1/2 ton                        | 260             | 740       | 950       | 1,700       | 2,500       | 4,100            | 9,000  |  |
| VIII                                                                                                                                                                                                                 | 1 ton                          | 500             | 1,450     | 1,900     | 3,300       | 4,800       | 8,000            | 1,7600 |  |
| IX                                                                                                                                                                                                                   | 2 ton                          | 860             | 2,500     | 3,300     | 5,800       | 8,300       | 13,900           | 30,400 |  |
| X                                                                                                                                                                                                                    | 3 ton                          | 1,350           | 4,000     | 5,200     | 9,200       | 13,200      | 22,000           | 48,200 |  |
| Note: Weight limits for each class are estimated from particle size by: $W = 0.85(\gamma_s d^3)$ where d corresponds to the intermediate ("B") axis of the particle, and particle specific gravity is taken as 2.65. |                                |                 |           |           |             |             |                  |        |  |

This large rock would require significant excavation and/or rock encroaching into the channel, therefore articulated concrete block is considered in lieu of classic rock slope protection as shown below:

### PROCESS




Size

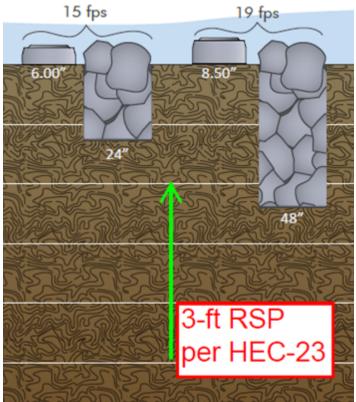
2 Ton

Step 1: ArmorFlex arrives on-site as a system of factory-assembled mats. ArmorFlex is placed on a site specific geotextile which has been placed on a prepared subgrade using conventional construction equipment.

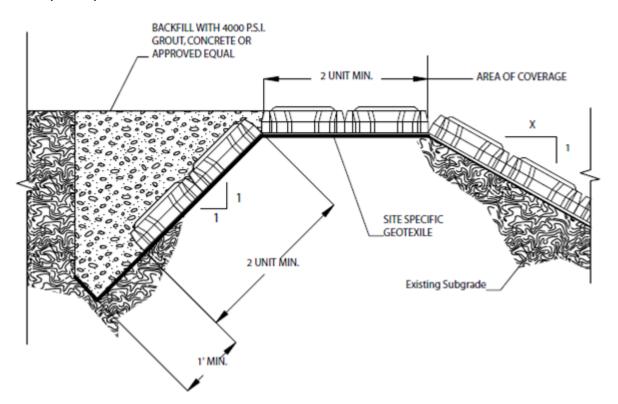


Step 2: Mats are supplied on flat bed trailers. Mats can be handled with a spreader bar which can be rented from Contech.




Step 3: ArmorFlex

ArmorFlex Mats are placed according to the site plans with appropriately sized equipment. Above normal waterline mats may be topsoiled and seeded to give a vegetated effect.




Proper toe trench requires a minimum of two rows of block buried below predicated soil depth. Tapered series block or mats subject to wave attack are required to have a bedding layer of crushed stone or gravel.

A sizing request has been sent to Contech to provide a size for the block. Preliminary sizing was obtained from the Contech literature.. From the velocity profile above, a 8.5" block is assumed for preliminary design.



The top of slope detail is shown below.



APPENDIX F – ARTICULATED CONCRETE BLOCK TECHNICAL MEMORANDUM

### **Technical Memorandum**

To: Sheila Amparo, PE, BKF Engineers
From: Cathy Avila, PE, Principal, Avila and Associates
Date: October 30, 2019
RE: Articulated Concrete Block (ACB) safety factor and hydraulic parameters



The purpose of this technical memorandum is to provide the safety factor and hydraulic parameters for, Articulated Concrete Block (ACB) sizing for scour and erosion prevention at Ennis Road over Sand Creek. Articulated Concrete Block systems provide bank and channel protection as an alternative to rock riprap or concrete lining. The systems consist of performed units which interlock, are held together by cables, or both, to form a continuous block matrix.

The factor of safety method outlined in the *Hydraulic Engineering Circular (HEC) No. 23<sup>1</sup>* is used to determine the size of ACBs. The method for determining the ideal safety factor for ACBs is outlined in Figure 8.3 in HEC-23 Volume 2, Design Guideline 8. The safety factor is based on the ACB application, consequence of failure, and uncertainty in hydrologic/hydraulic modeling. For Ennis Road, the ACB application is bridge piers and abutments, and the hydraulic model is a deterministic model (HEC-RAS) resulting in lower uncertainty than other model types. The consequence of failure was determined to be low as the structural stability of the bridge will not depend on the ACB system. The safety factor for the protection of Ennis Road Bridge ranges from 1.5 to 2.7 (Table 1).

Since ACB systems differ between manufacturers in size, shape, and performance, each system will have unique design parameters. It is the responsibly of the ACB manufacturers to test their products and develop design parameters using the results of these tests. The relevant results from the hydraulic modeling for use by the manufacturer in sizing the ACBs for this project are included in Table 2.

<sup>&</sup>lt;sup>1</sup> Lagasse et. al. 2009. "Bridge Scour and Stream Instability Countermeasures: Experience, Selection, and Design Guidance – Third Edition" Hydraulic Engineering Circular No. 23. September.

|                 | ety factor determination |          |                        |                                              |                    |
|-----------------|--------------------------|----------|------------------------|----------------------------------------------|--------------------|
| SF <sub>B</sub> | Based on Applicat        | ion      |                        |                                              |                    |
|                 | 1.2-1.4                  |          |                        | Channel bed or bank                          |                    |
|                 | 1.5-1.7                  |          | E                      | Bridge pier or abutme                        | nt                 |
|                 | 1.8-2.0                  |          |                        | Overtopping spillway                         |                    |
| X <sub>c</sub>  | Based on consequ         | ence of  | f failure              |                                              |                    |
|                 | 1.0-1.2                  |          |                        | Low                                          |                    |
|                 | 1.3-1.5                  |          |                        | Medium                                       |                    |
|                 | 1.6-1.8                  |          |                        | High                                         |                    |
|                 | 1.9-2.0                  |          |                        | Extreme or loss of life                      |                    |
| X <sub>m</sub>  | Based on uncertai        | nty in h | hydrologic/hydraulic m | nodeling                                     |                    |
|                 | 1.0-1.3                  |          | Determ                 | inistic (e.g. HEC-RAS, I                     | RMA-2V)            |
|                 | 1.4-1.7                  |          | Empirical or Stoch     | astic (e.g. Manning or                       | Rational Equation) |
|                 | 1.8-2.0                  |          |                        | Estimates                                    |                    |
| SF⊤             |                          |          | Based on equ           | uation below                                 |                    |
|                 |                          |          | $SF_T = S$             | F <sub>b</sub> X <sub>c</sub> X <sub>m</sub> |                    |
| SFT             | SF <sub>B</sub>          | X        | < <sub>c</sub>         | X <sub>m</sub>                               |                    |
|                 | 1.5                      | 1.5      | 1.0                    | 1.0                                          | Low                |
|                 | 2.7                      | 1.7      | 1.2                    | 1.3                                          | High               |

| Table 2. Relevant hydraulic results | Table | 2. | Re | levant | hyc | Irau | lic | results |  |
|-------------------------------------|-------|----|----|--------|-----|------|-----|---------|--|
|-------------------------------------|-------|----|----|--------|-----|------|-----|---------|--|

| Location                             |                   | Upst          | ream        | Upstream Face    | Downstream Face  | Down        | stream      |
|--------------------------------------|-------------------|---------------|-------------|------------------|------------------|-------------|-------------|
| River Station                        |                   | <u>1924.2</u> | <u>1914</u> | <u>1913 BR U</u> | <u>1913 BR D</u> | <u>1876</u> | <u>1833</u> |
| Channel Discharge (cfs)              | Q                 | 2433.5        | 3081.1      | 3166.8           | 3199.2           | 3261.2      | 2518.7      |
| Cross section average velocity (fps) | $V_{avg}$         | 12.6          | 10.6        | 13.3             | 10.6             | 13.2        | 11.9        |
| Maximum velocity (fps)               | $V_{\text{des}}$  | 16.5          | 12.0        | 14.6             | 11.5             | 14.0        | 14.7        |
| Hydraulic radius (ft)                | R                 | 5.5           | 5.9         | 5.2              | 5.7              | 5.0         | 5.0         |
| Maximum depth (ft)                   | у                 | 10.8          | 10.2        | 8.8              | 8.7              | 7.4         | 7.8         |
| Side slope                           | V:H               | 1.5V:1H       | 1.5V:1H     | 1.5V:1H          | 1.5V:1H          | 1.5V:1H     | 1.5V:1H     |
| Average bed slope                    | S <sub>0</sub>    | 0.003         | 0.003       | 0.003            | 0.003            | 0.003       | 0.003       |
| Slope of energy grade line           | S <sub>f</sub>    | 0.013665      | 0.007776    | 0.014649         | 0.008193         | 0.015515    | 0.014423    |
| Channel top width                    | Т                 | 42.2          | 48.0        | 43.5             | 50.8             | 46.4        | 53.4        |
| Radius of curvature                  | R <sub>c</sub>    | 530           | 530         | 530              | 530              | 530         | 530         |
| R <sub>c</sub> /T                    | R <sub>c</sub> /T | 12.55         | 11.05       | 12.20            | 10.44            | 11.43       | 9.93        |
| Bend coefficient                     | K <sub>b</sub>    | 1.05          | 1.05        | 1.05             | 1.05             | 1.05        | 1.05        |